Andrew Watson: The 'most influential' black footballer for decades lost to history

Image
  By Andrew Aloia BBC Sport Last updated on 11 October 2021 11 October 2021 . From the section Football Watson was a trailblazer who helped transform how football was played There are two murals of black footballers facing one another across an alleyway in Glasgow. One helped shape football as we know it, the other is Pele. Andrew Watson captained Scotland to a 6-1 win over England on his debut in 1881. He was a pioneer, the world's first black international, but for more than a century the significance of his achievements went unrecognised. Research conducted over the past three decades has left us with some biographical details: a man descended of slaves and of those who enslaved them, born in Guyana, raised to become an English gentleman and famed as one of Scottish football's first icons. And yet today, 100 years on from his death aged 64, Watson remains something of an enigma, the picture built around him a fractured one. His grainy, faded, sepia image evokes many differen

Melting of polar ice shifting Earth itself, not just sea levels

 by Clea Simon, 

Melting of polar ice shifting Earth itself, not just sea levels
Sophie Coulson and colleagues analyzed satellite data on melting glaciers and its impact on the Earth’s crust. Credit: Sophie Coulson

The melting of polar ice is not only shifting the levels of our oceans, it is changing the planet Earth itself. Newly minted Ph.D. Sophie Coulson and her colleagues explained in a recent paper in Geophysical Research Letters that, as glacial ice from Greenland, Antarctica, and the Arctic Islands melts, Earth's crust beneath these land masses warps, an impact that can be measured hundreds and perhaps thousands of miles away.

"Scientists have done a lot of work directly beneath ice sheets and glaciers," said Coulson, who did her work in the Department of Earth and Planetary Sciences and received her doctorate in May from the Graduate School of Arts and Sciences. "So they knew that it would define the region where the glaciers are, but they hadn't realized that it was global in scale."

By analyzing  on melt from 2003 to 2018 and studying changes in Earth's crust, Coulson and her colleagues were able to measure the shifting of the crust horizontally. Their research, which was highlighted in Nature, found that in some places the crust was moving more horizontally than it was lifting. In addition to the surprising extent of its reach, the Nature brief pointed out, this research provides a potentially new way to monitor modern ice mass changes.

To understand how the ice melt affects what is beneath it, Coulson suggested imagining the system on a small scale: "Think of a wooden board floating on top of a tub of water. When you push the board down, you would have the water beneath moving down. If you pick it up, you'll see the water moving vertically to fill that space."

These movements have an impact on the continued melting. "In some parts of Antarctica, for example, the rebounding of the crust is changing the slope of the bedrock under the ice sheet, and that can affect the ice dynamics," said Coulson, who worked in the lab of Jerry Mitrovica, the Frank B. Baird, Jr. Professor of Science.

The current melting is only the most recent movement researchers are observing. "The Arctic is an interesting region because, as well as the modern-day ice sheets, we also have a lasting signal from the last ice age," Coulson explained. An  once covered what is now Northern Europe and Scandinavia during the Pleistocene Epoch, the ice age that started about 2.6 million years ago and lasted until roughly 11,000 years ago. "The Earth is actually still rebounding from that ice melting."

"On recent timescales, we think of the Earth as an elastic structure, like a rubber band, whereas on timescales of thousands of years, the Earth acts more like a very slow-moving fluid." said Coulson, explaining how these newer repercussions come to be overlaid on the older reverberations. "Ice age processes take a really, really long time to play out, and therefore we can still see the results of them today."

The implications of this movement are far-reaching. "Understanding all of the factors that cause movement of the crust is really important for a wide range of Earth science problems. For example, to accurately observe tectonic motions and earthquake activity, we need to be able to separate out this motion generated by modern-day ice-mass loss," she said.

Coulson is continuing her research as a Director's Postdoctoral Fellow at Los Alamos National Laboratory in New Mexico as part of a climate group that works on future projections of ice sheets and ocean dynamics.

Glenn Antony Milne, professor of Earth and Environmental Sciences at the University of Ottawa, explained that understanding the extent of this movement clarifies all studies of the planet's . "Sophie's work is important because it is the first to show that recent mass loss of ice sheets and glaciers causes 3D motion of the Earth's [solid] surface that is greater in magnitude and spatial extent than previously identified," he said. "Also, one could look for this signal in regional and larger-scale global navigation satellite system datasets to, in principle, produce improved constraints on the distribution of ice mass fluctuations and/or solid Earth structure."


Explore further

Antarctic ice-sheet melting to lift sea level higher than thought, study says

More information: Sophie Coulson et al, The Global Fingerprint of Modern Ice‐Mass Loss on 3‐D Crustal Motion, Geophysical Research Letters (2021). DOI: 10.1029/2021GL095477

So much ice is melting that Earth's crust is moving, Nature (2021). DOI: 10.1038/d41586-021-02285-0

Journal information: Nature  Geophysical Research Letters 

Provided by Harvard University 

This story is published courtesy of the Harvard Gazette, Harvard University's official newspaper. For additional university news, visit Harvard.edu.

Comments

Popular posts from this blog

Andrew Watson: The 'most influential' black footballer for decades lost to history

Are there any planets outside of our solar system?

If everyone on Earth sat in the ocean at once, how much would sea level rise?