Andrew Watson: The 'most influential' black footballer for decades lost to history

Image
  By Andrew Aloia BBC Sport Last updated on 11 October 2021 11 October 2021 . From the section Football Watson was a trailblazer who helped transform how football was played There are two murals of black footballers facing one another across an alleyway in Glasgow. One helped shape football as we know it, the other is Pele. Andrew Watson captained Scotland to a 6-1 win over England on his debut in 1881. He was a pioneer, the world's first black international, but for more than a century the significance of his achievements went unrecognised. Research conducted over the past three decades has left us with some biographical details: a man descended of slaves and of those who enslaved them, born in Guyana, raised to become an English gentleman and famed as one of Scottish football's first icons. And yet today, 100 years on from his death aged 64, Watson remains something of an enigma, the picture built around him a fractured one. His grainy, faded, sepia image evokes many differen

Why does outer space look black?

 A lack of light has little to do with it.

Space as seen from Earth's surface
The dark night sky, as seen from Arches National Park in Utah (Image credit: Pascal Fraboul / EyeEm via Getty Images)

Look up at the night sky with your own eyes, or marvel at images of the universe online, and you'll see the same thing: the inky, abysmal blackness of space, punctuated by bright stars, planets or spacecraft. But why is it black? Why isn't space colorful, like the blue daytime sky on Earth

Surprisingly, the answer has little to do with a lack of light. 

"You would think that since there are billions of stars in our galaxy, billions of galaxies in the universe and other objects, such as planets, that reflect light, that when we look up at the sky at night, it would be extremely bright," Tenley Hutchinson-Smith, a graduate student of astronomy and astrophysics at the University of California, Santa Cruz (UCSC), told Live Science in an email. "But instead, it's actually really dark." 

Related: How long is a galactic year?

CLOSE
Volume 0%
 
PLAY SOUND

Hutchinson-Smith said this contradiction, known in physics and astronomy circles as Olbers' paradox, can be explained by the theory of space-time expansion — the idea that "because our universe is expanding faster than the speed of light … the light from distant galaxies might be stretching and turning into infrared waves, microwaves and radio waves, which are not detectable by our human eyes." And because they are undetectable, they appear dark (black) to the naked eye.

Miranda Apfel, who is also a graduate student of astronomy and astrophysics at UCSC, agreed with Hutchinson-Smith. "Stars give off light in all colors, even colors not visible to the human eye, like ultraviolet or infrared," she told Live Science. "If we could see microwaves, all of space would glow." Apfel said this is because the cosmic microwave background — light energy from the Big Bang that was scattered by protons and electrons existing during the early universe — still fills all of space.

Another reason interstellar and interplanetary space appear dark is that space is a nearly perfect vacuum. Recall that Earth's sky is blue because molecules that make up the atmosphere, including nitrogen and oxygen, scatter a lot of visible light's component blue and violet wavelengths from the sun in all directions, including toward our eyes. However, in the absence of matter, light travels in a straight line from its source to the receiver. Because space is a near-perfect vacuum — meaning it has exceedingly few particles — there's virtually nothing in the space between stars and planets to scatter light to our eyes. And with no light reaching the eyes, they see black.

That said, a 2021 study in The Astrophysical Journal suggests that space may not be as black as scientists originally thought. Through NASA's New Horizons mission to Pluto and the Kuiper Belt, researchers have been able to see space without light interference from Earth or the sun. The team sifted through images taken by the spacecraft and subtracted all light from known stars, the Milky Way and possible galaxies, as well as any light that might have leaked in from camera quirks. The background light of the universe, they found, was still twice as bright as predicted. 

The reasons for the additional brightness, which remain unknown, will be the focus of future studies. Until then, one thing seems likely: Space could very well be more "charcoal" than pitch-black.

Originally published on Live Science.

Tiffany Means is a meteorologist turned science writer. Her work has appeared in Yale Climate Connections, The Farmers' Almanac, and other publications. Tiffany has a bachelor's degree in atmospheric science from the University of North Carolina, Asheville, and is earning a master's in science writing at Johns Hopkins University. Follow her on Twitter @tifmeans.

Comments

Popular posts from this blog

Inside Xanadu 2.0: Take a sneak peek into Bill and Melinda Gates’s Washington mansion

Andrew Watson: The 'most influential' black footballer for decades lost to history

Are there any planets outside of our solar system?